

Model Answer Set-I Std. – 10th EM/Semi Subject – Algebra

Tim	e : 2 Hrs. Ma	arks : 40
Q.1	A) Solve Multiple choice questions.	4
1)	Option b	
2)	Option a	
3)	Option d	
4)	Option c.	
B)	Solve the following questions.	4
1)	$X^2 - 7x + 5 = 0$	
	Comparing with $ax^2 + bx + c = 0$ we get $a = 1, b = -7, c = 5$	
2)	$a = t^1 = -3$	
	$t^2 = t^1 + d = -3 + 0 = -3 t^3 = t^2 + d = -3 + 0 = -3,$	
	$t^4 = t^3 + d = -3 + 0 = -3.$	
	:. Arithmetic progression is -3, -3, -3	
3)	Here possibility are : 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20	
	∴ There are 11 cards bearing numbers 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20	
4)	Rate of CGST is 6% and rate of SGST is 6%	
Q.2	A) Complete the following activities. (Ant two)	4
1)	If one root of the quadratic equation $5m^2 + 2m + k = 0$ is $\frac{-7}{5}$ then find the value of k by complete	eting
	the following activity.	
	$\frac{-7}{5}$ is the root of equation $5m^2 + 2m + k = 0$	
	$\therefore \frac{-7}{5}$ is satisfies the give equation.	
	Substituting = $\frac{-7}{5}$ in given equation.	
	$\therefore 5 \times \left(\frac{-7}{5}\right)^2 + 2 \times \frac{-7}{5} + k = 0$	
	$\therefore \frac{49}{5} + \frac{-14}{5} + k = 0$	
	\therefore 7 + k = 0	

- $\therefore k = -7$
- 2) The maximum bowling speed (km/h) of 33 players at a cricket coaching center is given in the following table. Find the modal bowling speed of a player.

Bowling speed (km/h)	Number of players frequency
85 - 10	9
100 - 115	11
115 - 130	8
130 - 145	5

Here, L = 100, $f_m = 11$, $f_1 = 9$, $f_2 = 8$, h = 15.

Mode = L +
$$\left[\frac{f_{m-f_1}}{2f_{m-f_1-f_2}}\right]$$
h(Formula)
= 100 + $\left[\frac{11-9}{2(11)-9-8}\right] \times 15$ (Substituting the value)
= 100 + $\frac{2}{22-17} \times 15$
= 100 + $\frac{2}{5} \times 15$
= 100 + 6 = 106

The modal bowling speed of a player is 106 km/h.

3) Two dice are rolled simultaneously. Find thr probability that
i. the sum of the numbers on their upper faces is at the ost 5.
ii. The sum of the numbers on their upper face is at the least 6.
i. n(S) = 36

$$n(A) = 10$$

$$\therefore P(A) = \frac{n(A)}{n(S)}$$

$$= \frac{10}{36}$$

$$= \frac{5}{18}$$

ii. n(S) = 36
n(A) = 26
P(A) = \frac{n(A)}{n(S)}

$$= \frac{26}{36}$$

$$= \frac{13}{18}$$

B) Solve the following question. (Any four)

1)

Class	Frequency	Cumulative
Daily No. of	(No. of	frequency (less
hours	workers) f _i	than)
8-10	150	150
10-12	500	600
12-14	300	950
14-16	50	1000
Total	$\sum f_i = 1000$	-

Here total frequency $\sum f_i = N = 1000$.

$$\therefore \frac{N}{2} = \frac{1000}{2} = 500$$

 \therefore The median class is 10 - 12

$$\therefore \text{ Median} = L + \left[\frac{N}{2} - cf}{f}\right] h$$
$$= 10 + \left(\frac{500 - 150}{500}\right) 2$$
$$= 11.4$$

- \therefore Median no. of hours they work is 11.4 hours.
- x + 7y = 10....I 2)II 3x - 2y = 7Equation I can be written asIII x = 10 - 7ySubstituting the value of x in equation II 3x - 2y = 7 $\therefore 3(10-7y) - 2y = 7$ $\therefore 30 - 2 \setminus 1y - 2y = 7$ $\therefore 30 - 23y = 7$ $\therefore -23 = 7 - 30$ $\therefore -23y = -23$ $\therefore y = \frac{-23}{-23}$ \therefore y = 1 \therefore Substituting y = 1 in equation III x = 10 - 7y \therefore x = 10 - 7 × 1 $\therefore x = 10 - 7$ $\therefore x = 3$ \therefore x = 3, y = 1 is the solution of given simultaneous equations. 3) The sample space is the set of all days in a year :: n(S) = 365i. Let A be the event that both have different birthdays. \therefore n(A) = 364 (\therefore Other friend can have birthday on any one of the remaining 364 days) :. $P(A) = \frac{n(A)}{n(S)} = \frac{364}{365}$ ii. Let b be the event that both have the same birthday. \therefore n(B) = 1 (\therefore the other friend can have birthday only on the same day) $\therefore \mathbf{P(B)} = \frac{n(B)}{n(S)} = \frac{1}{365}$ $\sqrt{5x^2} - x - \sqrt{5} = 0$ 4) $\sqrt{5x^2} - x - \sqrt{5} =$ Comparing with $ax^2 + bx + c = 0$ we get, $a = \sqrt{5}$, b = -1 $c = -\sqrt{5}$. $\Delta = b^2 - 4ac$ $= (-1)^2 - 4 \times \sqrt{5} \times -\sqrt{5}$ = 1 + 20 $\therefore \Delta = 21$ Here a = 14, d = 2, n = 1005) $S_n = \frac{n}{2} [2a + (n-1)d]$ $\therefore S_{100} = \frac{100}{2} [2 \times 14 + (100 - 1) \times 2]$ = 50 [28 + 198] $= 50 \times 226 = 11300$: Sum of first 100 terms of given A.P. is 11,300

Q.3 A)Complete the following activity (Any two)

5x + 3y = 9I 1) 2x - 3y = 12II Adding equation I and equation II 5x + 3y = 9+2x-3y=12 $\therefore x = \frac{21}{7} = 21$ $\therefore x = 3$ Place x = 3 in equation I $5 \times 3 + 3y = 9$ $\therefore 3y = 9 - 15$ $\therefore 3y = -6$ $\therefore y = \frac{-6}{3}$ ∴ y = -2 (x,y) = (3,-2) is the solution of given simultaneous equations. 2) Form the quadratic equation from its roots. 3 and -10 Let α and β are the roots of the quadratic equation. Let $\alpha = 3$ and $\beta = -10$ $\therefore \alpha + \beta = 3 + (-10) = -7$ and $a \times \beta = 3 \times -10 = -30$ Then required quadratic equation is $\therefore x^2 - (\alpha + \beta) \times + \alpha \beta = 0$ $\therefore x^2 - (-7) \times -30 = 0$ $\therefore x^2 + 7x - 30 = 0$ **B)** Solve the following question. (Any two) Market value of share = Rs. 50 1) Brokerage = 0.2%: Brokerage per share = 0.2% of Rs. 50 $=\frac{0.2}{100}\times 50$ = Rs. 0.10 GST per share = 18% of Rs, 0.10 $=\frac{18}{100}\times 0.10$ = Rs. 0.018 Total purchase price = Market value + Brokerage + GST= 50 + 0.10 + 0.018= Rs. 50.118 $\therefore \text{ Number shares purchased} = \frac{Total investment}{Purchase price per share}$ 50118 $=\frac{50}{50.118}$ = 1000Mr. Sanghvi purchased 1000 shares.

3

6

2)
$$x^2 + 2\sqrt{3x} + 3 = 0$$

Comparing with $ax^2 + bx + c = 0$ we get,
 $a = 1, b = 2\sqrt{3}, c = 3$
 $b^2 - 4ac = (2\sqrt{3})^2 - 4 \times 1 \times 3$
 $= 12 - 12$
 $= 0$
 $x = \frac{-h + \sqrt{b^2 + 4ac}}{2a}$
 $= \frac{2\sqrt{3} \pm \sqrt{3}}{2a}$
 $= \frac{2\sqrt{3} \pm \sqrt{3}}{2a}$
 $= \frac{2\sqrt{3} \pm \sqrt{3}}{2a}$
 $= \frac{2\sqrt{3} \pm \sqrt{3}}{2a}$
 $x = -\frac{1}{\sqrt{3}}$ or $x = -\frac{2\sqrt{3} + 0}{2}$
 $\therefore x = -\sqrt{3}$ or $x = -\frac{\sqrt{3}}{2}$
 $\therefore (x = -\sqrt{3})$ or $x = -\frac{\sqrt{3}}{2}$ or $x = -\frac{\sqrt{3}}{2}$
 $\therefore (x = -\sqrt{3})$ or $x = -\frac{\sqrt{3}}{2}$ or $x = -\frac{\sqrt{3}}{2}$
 $\therefore (x = -\sqrt{3})$ or $x = -\frac{\sqrt{3}}{2}$ or $x = -\frac{\sqrt{3}}{2}$
 $\therefore (x = -\sqrt{3})$ or $x = -\frac{\sqrt{3}}{2}$
 $\therefore (x = -\sqrt{3})$ or

 $m + n = \frac{1}{15} \quad \therefore 15 \text{ m} + 15n = 1$ and 20m + 12n = 1Multiplying equation (3) by 4 and equation (4) by 3

60m + 60n = 4

60m + 36n = 3

24n = 1

 \therefore n = $\frac{1}{24}$

Substituting $n = \frac{1}{24}$ in equation (4) $30m + 12 \times \frac{1}{24} = 1 \qquad \therefore 20 \ m + \frac{1}{2} = 1 \qquad \therefore 20m = \frac{1}{2}$

 $\therefore m = \frac{1}{40}$

Re-substituting the values of m and n, we get,

$$m = \frac{1}{x} = \frac{1}{24} = 1 \quad \therefore x = 40$$

and $n = \frac{1}{y} = \frac{1}{24} \quad \therefore y = 24$

2)

Individually tap A and tap B requires 40 days and 24 days respectively to fill the swimming pool..

Blood pressure (in suitable units)	105 - 110	110 - 115	115 - 120	120 - 125	125 - 130	130 - 135	135 - 140
Class mark	107.5	112.5	117.5	122.5	127.5	132.5	137.5
Number of patients	0	5	35	50	20	5	0

... (5) ... (6) ... [Subtracting equation (6) from equation (5)]

.....(3)

	= 102			
Smt Mita received 102 shares				
She paid 0.1% brokerage for buying 102 shares				
: brokerage $=\frac{0.1}{100} \times 102 = \text{Rs} \ 10.20$				
Total amount by Smt Mita for purchasing shares = Rs				
(10200 + 10.20)	$= \text{Rs } 10210.20 \qquad \dots \dots \dots (1)$			
She sold 60 shares when MV was Rs 125				
Amount received by Smt Mita by selling 60 shares	= Number of			
	shares \times MV(2)			
	$= 60 \times 125$			
	= Rs 7500			
Remaining shares $= 102 - 60 = 42$				
42 shares are sold at MV Rs 90				
Amount received by Smt Mita by selling 42 shares	$=42 \times 90$ (3)			
	= Rs 3780			
The total amount received by Smt Mita	$= \text{Rs} (7500 + 3780) \dots [\text{From } (2) \& (3)]$			
	$= \text{Rs} \ 11,280 \qquad \dots $			
She paid brokerage 0.1% for each trading				
	$= \text{Rs} \ 11280 \times \frac{0.1}{2} = Rs$			
Prokarage paid - amount × paraantage of brokarage	100 (5)			
blokelage paid – amount × percentage of blokelage	(3)			
Actual amount received by Smt Mite	11.20			
- amount by solling shares - brol	20 1 9 00			
= amount by senting shares $=$ 010 $= \mathbf{P}_{0} (11280, 1128) = \mathbf{P}_{0} (11268)$	$72 \qquad [From (4) & (5)] \qquad (6)$			
$= KS (11280-11.28) = KS 11268.72 \dots [From (4) & (5)] \dots (6)$ The actual amount received by Smt Mite is more than her investment				
The actual amount received by Sint what is more than her investment.				
$- \mathbf{p}_{0}$ (11268 72 - 10210 20)	$[From (6) \ fr(1)]$			
$- \mathbf{R}_{S} (11200.72 - 10210.20)$ $- \mathbf{P}_{S} (1058.52)$	$\dots [\Gamma 10 \Pi (0) \propto (1)]$			
- K 8 1030.32				

3

Q.5 Solve the following questions. (Any one)

1) The expenditure for each component is converted into central angle

Component	Expenditure (in rs.)	Measure of the central angle
Raw material	800	$\frac{800}{1440}$ × 360° = 200°
Labour	300	$\frac{300}{1440} \times 360^\circ = 75^\circ$
Transportation	100	$\frac{100}{1440}$ × 360° = 25°
Packing	100	$\frac{100}{1440}$ × 360° = 25°
Taxes	140	$\frac{140}{1440}$ × 360° = 35°
Total	1440	360°

On the basis of the table, the pie diagram is drawn:

2)
$$2x + y = 19$$

 $2x - 3y = -3$
 $D = \begin{vmatrix} 2 & 1 \\ 2 & -3 \end{vmatrix} = [2 \times (-3)] - [2 \times (1)] = -6 - (2) = -6 - 2 = -8$
 $D_x = \begin{vmatrix} 19 & 1 \\ -3 & -3 \end{vmatrix} = [19 \times (-3)] \times (1)] = -57 - (-3) = -54$
 $D_y = \begin{vmatrix} 2 & 19 \\ 2 & -3 \end{vmatrix} = [(2) \times ((-3)] - [(19) \times (2)] = (-6) - 38 = -44$
By Cramer's Rule -
 $x = \frac{D_x}{D}$
 $\therefore x = \frac{-54}{D} = 6.75$
 $\therefore y = \frac{-44}{D} = 5.5$

 $\therefore \quad x = \frac{1}{-8} = 6.75 \qquad \therefore y = \frac{1}{-8} = 5.5$ $\therefore \quad (x,y) = (6.75, 5.5) \text{ is the solution of the given equations.}$